Key technical features of IEEE Std 1451.2-1997

Stan Woods

Agilent Technologies
October 4, 2001

A general model of a smart sensor

Some points regarding "smart":

- Moving intelligence closer to the point of measurement/control.
- Confluence of transducers, computation and communication towards common goal.
- Goal: make it cost effective to integrate/maintain distributed systems.

1451.2 partition

IEEE Std 1451.2-1997 distinguishing features

- Extensible Transducer Electronic Data Sheet (TEDS)
- General calibration/correction model for transducers.
- Physical units representation based on SI units.
- Triggering and control model defines how channels are accessed.
- All channels may be triggered simultaneously, timing parameters are used to indicate channel differences.
- Models for different kinds of sensors
- Powerful concept/location of correction engine allows flexibility in system design.

1451.2 smart sensor model

1451.2 hardware interface

- 1) Communication
- 2) Triggering/handshaking
- 3) Interrupts and hot swap
- 4) Power

STIM control/data model

1451.2 TEDS blocks

Machine readable

Meta-TEDS

(mandatory)

Channel TEDS

(mandatory)

Calibration TEDS

Human readable

Meta-ID TEDS

Channel ID TEDS

Calibration ID TEDS

Application specific

End Users'
Application
specific
TEDS

Future extensions

Industry Extension TEDS

System issues addressed by 1451.2 architecture

1451.2 Architecture

 Distance is achieved with the network

- Plug and play at the transducer level with short distance interface (or hidden if NCAP and STIM are integrated).
- Last few feet achieved with analog wiring.

Node Design Tradeoffs

- Big NCAP and little STIMs:
 - e.g. NCAPs with multiple 1451.2 ports.
- Little NCAP and big STIMs:
 - e.g. STIMs with many channels.
- Scalability
 - type of network
 - processing power
 - type of processor
 - number of channels
 - types of sensors and actuators
 - hardware interface speed
 - connectors or PCB traces

System performance issues

1451.2 correction engine in the NCAP

1451.2 correction engine "elsewhere" in the system

1451.2 correction engine in the STIM

Measurement/control loops

- With the network / 1451.2
 architecture there are three loops
 which may be used for measurement and control.
 - 1) Control by layers above the NCAP
 - 2) NCAP-based control of STIM channels
 - 3) Control done within a STIM
- Control may be:
 - Client/server (poll/set, 'pull', tightly coupled)
 - Publish/subscribe ('push', loosely coupled)

Synchronization

17

Next steps

- Consider changes to:
 - TEDS
 - Data/control model
 - Hardware interface
- The following presentations will provide perspectives on the implementation of 1451.2 and more information on proposed changes.